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Validation of the variational approach for chirped pulses in fibers with periodic dispersion
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We consider the propagation of chirped optical solitons in a fiber with periodic dispersion and describe this
by a variational approach assuming a single pulse ansatz. We obtain a good agreement between the variational
equations and the full numerical solution for the low-frequency region below the fundamental resonance. In
that case we study the nonlinear resonances and chaotic oscillations of the pulse width and with this analysis
we can predict the stochastic decay of pulses under a periodic modulation of the dispersion. For the main
resonance and resonances above it, this simple variational approach fails because of a strong emission of linear
waves. Then the numerical solution decays slowly while the simple model predicts a fast breakup. In the
high-frequency limit the pulse is stable and we can describe it via averaged variational equations for its width
and chirp, which we derive. We show that this dynamical model yields interesting physical estimates for
soliton propagation in a fiber with dispersion management.@S1063-651X~98!12110-4#

PACS number~s!: 42.65.Tg, 42.50.Ar, 42.81.Dp
on
re

ion
ca
h
ac
uc

e
iv

ho
ot
o
th
s

ow

o

at
o

on
of
lly

-
th
th
la
b

k
ore
li-

am-
otic
ra-
olu-

ng

lly
so-

a-
can
ace.
vo-
of

main
the
cy
tio
e

d can

en
ion
t
e of
on
ide
dy
-
lso
I. INTRODUCTION

The influence of the modulation of optical fiber dispersi
on soliton propagation has attracted a lot of attention
cently. In particular, a strong modulation of the dispers
makes it possible to achieve a high bit rate in long opti
communication lines@1,2# because it allows us to approac
the zero dispersion limit where optical pulses do not inter
strongly with one another. Another great advantage of s
systems as shown in@3–5# is that the modulational instability
is strongly reduced both in bandwidth and in gain. Howev
the periodic modulation of dispersion leads to the radiat
damping of solitons@6,7# or to the existence of vibrating
solitons@8# and splitting of solitons@9#. The quasistationary
propagation of a localized nonlinear wave in such an in
mogeneous medium is possible, but such a wave is n
soliton in ordinary terms, due to the strong modulation
dispersion a significant chirp develops. Nevertheless,
pulse appears to be stable in many numerical simulation
in the case of a high-frequency modulation@10#. For the
purpose of optical communications it is important to sh
that these pulses are indeed stable.

Another important issue is the simplified description
these chirped pulses via a variational approach@11,12#. New
phenomena appear, such as the nonlinear resonances th
occur between the oscillations of the amplitude and width
the soliton and the modulation of the dispersion or the n
linearity @8,13#. This problem corresponds to the motion
an equivalent particle with variable mass in a periodica
varying Kepler potential. The authors of@8# studied these
ordinary differential equations~ODE’s! and showed numeri
cally that chaotic oscillations existed for some values of
amplitude of the modulation of dispersion and soliton wid
They also found numerically the critical amplitude modu
tion that causes the decay of the soliton. Another study
PRE 581063-651X/98/58~5!/6637~12!/$15.00
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one of the authors@14# showed that the soliton could brea
up in the presence of noise and estimated its lifetime. M
generally, in works concerning the chaotic dynamics of so
tons under periodic perturbations@15,16# it is usually as-
sumed that the soliton exists as a whole and that its par
eters such as position and amplitude vary in time in a cha
fashion. This is not always the case, in particular, when
diation is present or when resonances occur. Then the s
tions of the partial differential equation~PDE! and the varia-
tional ODE might disagree, as for the massive Thirri
model @17#.

In this work we have considered the case of a periodica
modulated dispersion and computed simultaneously the
lution of the partial differential equation and of the vari
tional equations in order to show the correspondence that
be established between the two systems in parameter sp
We are not looking for an exact correspondence in the e
lution but for a more general agreement over wide regions
phase space and parameter space when extracting the
features such as the width and chirp of the soliton from
full numerical simulations. When the modulation frequen
V varies, we find three main regions depending on the ra
V/v0 , wherev0 is the main frequency associated with th
oscillation of the soliton width. ForV,v0 we obtain a good
agreement between the PDE and ODE phase spaces an
predict the soliton breakup observed in@9# via a stochasticity
criterion on the Hamiltonian associated to the ODE. Wh
V>v0 the ansatz fails because of the emission of radiat
by the soliton. This emission diminishes asV increases pas
v0 so that one can recover a correspondence for the cas
a rapidly varying modulation. In that case a perturbati
analysis yields averaged variational equations, which prov
a good insight into the physics of the problem. The stu
completes the picture of@7# by showing that the soliton ex
hibits a rapid decay for large amplitude modulation. We a
6637 © 1998 The American Physical Society
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6638 PRE 58F. KH. ABDULLAEV AND J. G. CAPUTO
give a quantitative mechanism for this decay that expla
the results of@9# and extend the approach of@8# by examin-
ing the validity of the variational approach over the who
range of modulation frequencies.

At this point it should be noted that many of the conc
sions obtained for the periodic dispersion case carry on to
situation where the nonlinearity is periodically modulate
This can be seen by making a change of variable on
nonlinear Schro¨dinger equation, it holds as long as th
modulation is not strong enough to cancel the dispers
Another situation where this study is of interest is the case
the propagation of a spatial soliton in a medium with a pe
odic diffraction in the direction of propagation.

The paper is organized as follows: Sec. II describes
model and the main features of the variational ODE. In S
III we compute the numerical solution of the perturbed no
linear Schro¨dinger equation and compare its main featu
with the ones given by the variational ODE in order to va
date the latter. Here we identify the two main regions wh
the simple model holds. Section IV shows how one can
tain a criterion for chaos and soliton breakup in the subh
monic region by examining the nonlinear resonances for
Hamiltonian associated with the ODE. The case of a rap
varying periodic dispersion is addressed in Sec. V. There
derive averaged equations for the pulse width and chirp
show their relevance to the description of the solution of
partial differential equation. Section VI contains our co
cluding remarks.

II. DESCRIPTION OF THE MODEL

Let us consider the propagation of optical pulses in o
cal fibers with a periodically varying dispersion. The gove
ing equation is a modified nonlinear Schro¨dinger equation
~NLSE! for the dimensionless envelope of the electric fie

iux1 1
2 f ~x!utt1uuu2u50, ~1!

wherex,t are the coordinates along the direction of prop
gation and time given in a moving reference frame, resp
tively. The functionf (x) describes the periodic modulatio
of dispersion.

Different types of modulation have been studied, such
for example, the periodic box modulation@18#. Here we con-
sider the simple model of a one harmonic modulationf (x)
511 f 0sinVx, where f 0 will be in general smaller than 1
The period of the oscillations of dispersion isL52p/V and
should be compared to the dispersive length, which is
characteristic scale associated with a soliton. Frequently
thors have considered the case when the dispersive leng
much larger than the other scales. Then the guiding-ce
soliton concept@19# is valid. When the dispersive length
compatible withL, other approaches are necessary. This
cussion for a pure soliton carries down to a chirped pulse
which the scale of internal oscillations is defined by a co
bination of the initial chirp and deviation from the soliton
solution. For picosecond pulses this period is very large
for subpicosecond pulses it may be reduced to a few me
When this period is of orderL we can await resonance ph
nomena in the propagation of chirped solitons. The con
erations performed in this work also concern the case
s
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spatial solitons in inhomogeneous media. For that, cha
variablesx→z, t→x and assume a periodic modulation
the nonlinear part of the refraction index along thez axis.

Before describing the variational approach we briefly d
cuss the conserved quantities associated with Eq.~1!. Fol-
lowing the method used by Karpman@20# we can show that
the number of particles 2N2[*2`

1`uuu2dt and the momentum
P5 ( i /2)*2`

1`(utu* 2ut* u)dt are constants of the motion fo
Eq. ~1!. The Hamiltonian is not preserved and its evolutio
is given by d/dx @*2`

1`(uuu42uutu2)dt#522@ f (x)
21#*2`

1`Im(ut
2u* )dt. Because of the conservation of mome

tum the pulse can be assumed to be at rest so that the
tion and velocity variables can be ignored. We will calcula
the number of particles, momentum, and energy during
computations as a check.

Let us now recall the variational description of a chirp
soliton @12#,

u~x,t !5A~x!sechF t

a~x!Gexp@ ib~x!t2#, ~2!

where A(x), a(x), and b(x) describe the complex ampli
tude, width, and soliton frequency chirp, respectively. T
evolution of these variables is given by@8#

b~x!5
~ ln a!x

2 f ~x!
, ~3!

~auAu2!x50, ~4!

axx5
4 f 2

p2a3
2

4N2f

p2a2
1

axf x

f
, ~5!

~arg A!x52
f ~x!

3a2
1

5

6

N2

a
, ~6!

whereN2 is the conserved quantity associated with the nu
ber of particles,

E
2`

`

uuu2dt52auAu2[2N2. ~7!

From the system above it can be seen that the equation
a is independent from the others. We can write it using
new coordinates (a,b)

ax52ab f~x!,

bx5
2 f ~x!

p2a4
22b2f ~x!2

2N2

p2a3
. ~8!

As can be seen from Eq.~5! the soliton width evolution is
described by the motion of an effective particle of variab
massm51/f (x) in the nonstationary effective anharmon
potentialU @8#,



d
iv

its

i-
ga
ic
a

le
is-

i

o

g
t
a
-
by

of
e
of
o
t,

n, a
et

di-

illa-

tra-

cy
un-
r of

he
e
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d

dx F 1

f ~x!

da

dxG52
]U

]a
, ~9!

U~a,x!5
2 f

p2a2
2

4N2

p2a
,

and the Hamiltonian is

H~a,ax ,x!5
1

f ~x!

~ax!
2

2
1U~a,x!. ~10!

At this point it should be mentioned that Eqs.~5! and ~8!
present a singular behavior when the amplitude of the mo
lation f 0 is greater than 1. Then the mass of the effect
particle goes to 0 so that its speed under the influence
forcing tends to infinity. For the soliton this means that
width goes to 0 and its chirp to infinity.

When f (x) is a periodic function we deal with a period
cally perturbed Kepler problem. Consequently, the investi
tion of the oscillations of the soliton width under the period
dispersion is reduced to the study of the dynamics of a p
ticle of variable mass in a periodically perturbed Kep
problem. Before proceeding to the solution we will first d
cuss the unperturbed Kepler problem. We give here the
formation necessary for further analysis@21,22#. The poten-
tial energy is expressed by

U5
2

p2a2
2

4N2

p2a
. ~11!

The minimum of this potential is achieved atac51/N2 and is
equal toUc522N4/p2. From Eq.~11! the frequencyv0 of
small oscillations of the particle near the bottom of the p
tential can be found. The result isv052N4/p. It is the fre-
quency of oscillation of the width of a chirped soliton durin
its propagation in the homogeneous fiber. Figure 1 shows
potential ~11! together with the associated phase portr
(a,ax) obtained forN251.18. The character of the oscilla
tions of the width and amplitude of the soliton is defined
the initial total energyE052/p2a0

224N2/p2a012a0
2b0

2.
WhenE0,0, i.e., 112p2a0

4b0
2,2N2a0 we have an oscilla-

tory regime, but the caseE0.0, i.e., 112p2a0
4b0

2.2N2a0

FIG. 1. Potential~11! and phase portrait (a,ax) associated to the
Kepler problem~9! for N251.18.
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corresponds to an unbounded motion for which the width
the soliton increases indefinitely indicating that it will b
destroyed (a→`). The orbit separating these two types
motion corresponds toE050 and is unbounded. Notice als
how all orbits get very close to the left of the fixed poin
which corresponds to the pure soliton behavior (ac,0).
Therefore we expect that in the presence of a perturbatio
stochastic layer will be generated so that orbits will g
mixed at that point leading to escape.

Below we will investigate the case when the first con
tion (E0,0) is valid. From Eq.~11! the total energy of the
effective particle is

E5
ax

2

2
1

2

p2a2
2

4N2

p2a
. ~12!

For the oscillatory regime (E,0) the action variable is

J5
1

2p R axdx5
2&N2

p2A2E
2

2

p
. ~13!

The total energy is expressed in terms of the actionJ by
relation

H5E52
8N4

p2

1

~pJ12!2 . ~14!

From this expression we can derive the frequency of osc
tions of the soliton width

v~J!5
dH

dJ
5

16N4

p

1

~pJ12!3

5
p2

&N2
~2E!3/2, ~15!

which reduces tov0 whenJ goes to zero orE5Uc .
We also need to know the spectral properties of the

jectories of the Kepler motion@21#. The orbits are given in
parametric form:

a5b̄~12e0cosj!, vx5j2e0sin j, ~16!

where e05@12( p2uEu/2N4)#1/2 is the eccentricity andb̄
5 2N2/p2uEu. From Eq. ~16! it follows that amin5b̄(1
2e0) andamax5b̄(11e0) in agreement with@12#. For fur-
ther analysis it is important to know the cutoff frequen
above which the energy in the power spectrum for the
perturbed motion can be neglected. This gives a numbe
active harmonicsN0 ,

N05~12e0
2!23/25

23/2N6

p3uEu3/2
. ~17!

III. NUMERICAL SIMULATIONS FOR THE VALIDITY
OF THE VARIATIONAL APPROACH

In this section we will proceed to compare in detail t
long term evolution of the PDE solution with that of th
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variational ODE’s@Eq. ~8!#. This is an essential step to e
tablish the validity of this simplified model, which cannot b
done a priori using analysis. We have concentrated on
comparison of the behaviors of the two systems in terms
the widtha and chirpb for long times and also in paramete
space. Throughout the computations we have fixed the in
number of particlesN251.18 for the pulse and therefore th
natural frequency of oscillation of the soliton width and va
ied systematically the forcing frequencyV over a wide
range.

The investigation of the ODE’s for the first few low res
nances has been performed in@8# and detailed numerica
computations of the NLSE have been carried out in@9# for
the slow modulation caseV,v0 and have shown the exis
tence of regions in the parameter space (N2, f 0) where soli-
ton splitting occurs, and also the presence of islands of
bility. Here we complete this picture by estimating the wid
a and chirpb from the numerical solution and validate th
variational approach. Such a comparison was given in@10#
for the limiting case where the nonlinearity is negligible a
for a large frequency of modulation in the dispersion ma
agement scheme.

The numerical method that we have used is the metho
lines where the solution of Eq.~1! is advanced inx via an
ODE solver and the temporal part of the operator is d

FIG. 2. Variation of the widtha(x) for V5 v0/9 f 050.5, and
N251.2. The PDE solution is in full lines and the ODE in dash
lines.

FIG. 3. Variation of the chirpb(x) for the same conditions a
for Fig. 2.
a
f

al
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-

of
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cretized using finite differences. Using an ordinary differe
tial equation solver gives the scheme an implicit charac
that prevents the notorious instabilities that are present w
the scheme is explicit inx. The ODE solver that we have
used is the DOPRI5 method of Dormand and Prince, a
lyzed in @23#. This method is a combined fourth- and fifth
order Runge-Kutta-Fehlberg method enabling step size c
trol. This feature is very important because of the perio
perturbation; it guarantees that the step is always adapte
the solution. The tolerance chosen for the integrator is 1026.
The time discretization is done using centered finite diff
ences making the scheme second order. We have chose
all the results presented 1200 discretization points int and a
window of size 200. To prevent artificial reflections of th
waves emitted by the pulse, we have surrounded the com
tational domain by absorbing layers where an artific
damping, smoothly increasing witht, has been introduced
This damping has been adjusted so that the value of
solution at each end of the domain is approximately 1025.
We are therefore sure that no significant reflection ta
place at these boundaries.

The accuracy of the computations is monitored by che
ing the conservation of the number of particles, the mom
tum and the energy relation given above. For all cases
momentum is conserved to the accuracy of 10210. The num-
ber of particles is conserved to a very good accuracy up
the point where waves start leaving the computational
main and enter the absorbing layers.

The widtha and chirpb were estimated from the numer
cal solution of the PDE in the following way. Using th
modulus of the solution around the pulse down to 20% of

FIG. 4. Three-dimensional plot of the PDE solution for the c
culation shown in Fig. 2.

FIG. 5. Variation of the widtha(x) for V5 v0/4 and f 050.1
for the PDE solution shown in full lines and the ODE in dash
lines.
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maximum amplitude we have solved a nonlinear least squ
problem assuming the chirped soliton form~5! and used a
standard conjugate gradient method@24# to obtain the solu-
tion. The chirp was estimated by a least square fit on
phase of the solution assuming that it has a quadratic de
dance int.

We first consider the case of a very slow modulation
the dispersionV5v0 /9. Figure 2 shows the evolution of th
width of the pulsea(x) for the PDE and the variationa
ODE’s ~5! for a forcing amplitudef 050.5. We can see the
very good agreement between the solution of the partial
ferential equation~1! and the ODE solution except that th
latter contains more harmonics. These oscillations incre
in frequency as the ‘‘bottom’’ of the modulation curve
reached, there the chirp becomes very large as expected
Eq. ~5!. Figure 3 shows the chirpb(x) around the minimum
of the dispersion for both the PDE~full line! and the ODE
~dashed line!. The frequency increase is very apparent on
ODE data and less on the PDE for which the fitting rout
breaks down at the minimum. The three-dimensional~3D!
solution shown in Fig. 4 shows that the pulse becomes c
pressed very strongly at that point and radiation is emitt
This is mostly a numerical problem as can be seen by d
bling the number of discretization points from 1200 to 240

FIG. 6. Phase portrait (a,b) for V5 v0/4 corresponding to Fig.
5. The orbit corresponding to the PDE is given in dots while that
the ODE is in dashed lines.

FIG. 7. Variation of the widtha(x) showing breakup of the
soliton forV5 v0/4 andf 050.6 for the PDE solution shown in ful
lines andf 050.5 for the ODE solution shown in dashed lines.
re
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Then the small ripples occurring when the pulse is hig
compressed, disappear. The increase of the frequency is
nected to the adiabatic invariantH/V @21# for the equivalent
particle oscillating in the potential well. As the dispersion
decreased, the energy of the effective particle represen
the pulse is increased because the potential well gets de
so that in order for the ratio to be constant the frequen
should increase.

We now consider the case when the modulation freque
is equal tov0/4 and find a good correspondence fora(x) for
f 050.1 as shown in Fig. 5. Again the ODE solution exhib
more harmonics than the PDE solution. This is very appar
on the phase portrait (a,b) shown in Fig. 6 which also show
that the two solutions are very close. When the amplitude
the forcing is increased we observe thata becomes un-
bounded both for the PDE forf 050.6 and the ODE forf 0
50.5. The evolution ofa for these two situations is pre
sented in Fig. 7, where one can notice the good agreem
between the two systems even for the higher harmonics.
phase portrait (a,b) for the two systems presented in Fig.
is typical of the Kepler problem with the bunching of orbi
for small a and the sharp turn for largea. The blowup for
a(x) corresponds to the splitting of the pulse into two sm
pulses as is shown in Fig. 9 and was observed in@9#. Be-
cause of the conservation of momentum the small pu
travel with opposite velocities. The good agreement betw
the variational ODE and the PDE solution is preserved wh
V5 v0/2 and we observe breakup of the soliton forf 0
50.4 (f 050.3) for the PDE~ODE! solution with a good
global agreement in the (a,b) phase-space as shown in Fi
10.

r

FIG. 8. Phase-portrait (a,b) for V5 v0/4 corresponding to Fig.
7. The orbit corresponding to the PDE is given in dots while the o
for the ODE is in dashed lines.

FIG. 9. Three-dimensional plot of the PDE solution correspo
ing to Figs. 7 and 8 showing the splitting of the soliton into tw
smaller pulses.
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When the modulation frequencyV is increased and
reachesv0 a resonance occurs for the chirped soliton. Fig
11 shows a plot of the PDE solution forf 050.2. It shows
that the pulse initially adjusts to the perturbation but ve
quickly develops a strong background of radiation. It w
continue to emit and slowly decay asx increases. This reso
nance valueV5v0[ 2N4/p between the widtha and the
chirp b is smaller thanv* 5N4, the one for a pure soliton
calculated using the inverse scattering transform@6,7#. In
other words, a soliton will break up for a smaller modulati
frequency than expected from IST considerations becau
will develop a chirp that will resonate with its width. In thi
case the description of the chirped pulse via the variatio
ODE’s fails as shown in Fig. 12, which gives the evoluti
of a for the PDE solution and the ODE for the same para
eters as Fig. 11. The ODE solution indicates a complete
cay of the soliton after four oscillations while the PDE so
tion shows a 10% decay over the same period of tim
Notice, however, the good agreement between the
curves obtained forx,5 which is consistent with the initia
evolution of the pulse in Fig. 11. As expected from IS
considerations@7# the rate of decay of the pulse due to em
sion decreases asV increases pastv0 . Figure 13 shows the
evolution of a for the PDE and the ODE forV52v0 and
f 050.2. The ODE solution escapes to infinity as was p
dicted in@8#, while the PDE solution decays slower than f
the main resonance.

The overall correspondence between the PDE and
variational ODE can be seen by examining if the radiat
remains in the vicinity of the pulse. For that we compute
evolution of the number of particles inside the computatio

FIG. 11. Three-dimensional plot of the PDE solution forV
5v0 and f 050.2.

FIG. 10. Phase-portrait (a,b) for V5 v0/2 and f 050.4 for the
PDE solution shown in dots andf 050.3 for the ODE solution
shown in dashed lines.
e
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e
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domainM5*20
180uuu2dt as a function ofx. This is shown in

Fig. 14 for different values of the ratioV/v0 . We observe
almost no decay for the subharmonic forcing, which sugge
that the radiation remains locked to the pulse. On the ot
hand, there is a fast decay for the fundamental resonanc
can be expected from the 3D picture Fig. 11. As expec
from @7#, the emission of linear waves by the soliton and t
decay rate of its amplitude is maximum forV5v0 and asV
is increased, this rate is reduced. It is therefore expected
a simplified description will hold for very large frequencie
for which the emitted radiation would be negligible. Indeed
simple model based on the Kapitsa averaging will be p
sented in Sec. V and shown to be in good agreement with
PDE. Another indication of this agreement is the fact that
stochastic layer becomes exponentially narrow for large
quencies as will be shown in the next section.

To conclude this section, we present in Table I the m
results in the comparison between the PDE solution and
variational ODE. We have observed a very good corresp
dence between the PDE solution and the solution of
variational ODE@Eq. ~5!# for close values of the forcing
amplitudef 0 as long asV,v0 . An important consequenc
of this is that one can establish a criterion for soliton splitti
for the PDE by analyzing the perturbed Hamiltonian syst
~5! for orbits that are close to the separatrix, which cor
sponds to an unbounded motion. This is the object of
next section.

FIG. 12. Variation of the widtha(x) for V5v0 and f 050.2 for
the PDE solution shown in full lines and the ODE in dashed lin

FIG. 13. Same as Fig. 12 except thatV52v0 .
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IV. NONLINEAR RESONANCES AND CHAOS
IN THE SOLITON WIDTH

AND AMPLITUDE OSCILLATIONS

During the propagation of chirped soliton in optical fibe
there is an interplay between two periodic processes—
soliton width oscillations and the periodic modulation of t
fiber dispersion—so that nonlinear resonances and dyn
cal chaos phenomena are possible. Bearing in mind tho
that the chaotic motion in the given system is a transi
process, the effective particle will obtain in the diffusio
process over resonances, a sufficient amount of energy t
freed from the potential well and move as a free particle
infinity. For this reason we can consider the stochastic
criterion that we obtain@Eq. ~28!# as a condition for the
breaking of the optical soliton. This problem has an intere
ing close analogy with the problem of the stochastic ioni
tion of a hydrogen atom in a periodic field@25# where an

FIG. 14. Evolution of the number of particles in the compu
tional domain*20

180uuu2dt for different values of the ratioV/v0 and
an amplitude of the modulationf 050.1.
e

i-
gh
t

be
o
y

t-
-

electron escapes from the central potential under a str
periodic electromagnetic field. Then the equation is ve
similar to Eq.~5! except that the modulation is linear ina
due to the field dipole interaction.

For the purpose of analysis the theory of nonlinear re
nances@26–28# will be applied. Then it is convenient to us
the action-angle variables for the solution of the proble
The total Hamiltonian in the action-angle variablesJ,u has
the form

H5H01 f 1~x!V5H0~J!1H1~J,u;x!, ~18!

where the unperturbed HamiltonianH0 is given by Eq.~14!
and the interaction termH1 of the Hamiltonian in the ap-
proximation f 511 f 1 , f 1!1 is

H1~J,u;x!

5 f 1~x!S 2
1

2
~a~J,u!x!

21
2

p2a2D [ f 1~x!V.

~19!

From Eqs.~18! and ~19! we can write the equations of mo
tion using the variablesJ,u,

dJ

dx
52 f 1~x!

]V

]u
,

du

dx
5v~J!1 f 1~x!

]V

]J
. ~20!

The periodic forcef (x) causes nonlinear resonances
the oscillations of the soliton parameters. The regions
nonlinear resonances can be obtained by using the expan
of V(J,u;x) in Fourier series inu. Using Eq.~17! we find
from Eq. ~19!

-

TABLE I. Behavior of the solutions of the PDE~1! and the ODE~8! for different forcing frequencies.

V

v0
Variational ODE Nonlinear Schro¨dinger

Agreement forf 0,0.5,
chirp ubu→`,
width a→0

1
16 Compressed pulse

1
9 No radiation

Agreement
1
4 a→` for f 050.5 Soliton break-up forf 050.6

Agreement
1
2 a→` for f 050.3 Soliton break-up forf 050.4

Disagreement
1 a→` for f 050.2 Radiation 20% decay for 0,x,200

Disagreement
2 a→` for f 050.2 Radiation 10% decay for 0,x,200

Disagreement
3 a→` for f 050.4 Radiation 5% decay for 0,x,200
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H15(
m,k

Vmf ke
2 imu1 ikVx1c.c., ~21!

Vm5
1

2p E
0

2p

Veimudu. ~22!

Below for simplicity we consider the case when there
only one harmonic term inf 1(x)5 f 0sinVx. Resonances ap
pear when there is an integerm such that

mv~J!2V50, ~23!

i.e., when v5vm[V/m. The oscillations of the soliton
width a and amplitude resonate with the periodical modu
tions of the fiber dispersion. To our knowledge, the first lo
nonlinear resonances were investigated in@8#. Notice also
that the dynamics of chirped pulses in fibers with rand
parameters has been studied in@14#, where it was shown tha
randomness can be used for the control of the paramete
the soliton. To investigate the influence of the external p
odic action on the character of motion the simplest is
investigate a Poincare section built by sampling an orbi
the phase space (a,ax) obtained from Eq.~5! every time
interval 2p/V.

Figure 15 presents the Poincare section obtained foV
5 v0/2 and f 050.1. One can see non resonant trajector
slightly deformed corresponding to the KAM theorem. N
tice the third-order resonance and the seventh-order r
nance just beneath the stochastic layer. The orbits ente
this layer eventually escape to infinity. When the forci
parameter is increased tof 050.2 as shown in Fig. 16 all the
nonlinear resonances disappear and the stochastic laye
comes closer to the periodic orbit.

The Hamiltonian~18! corresponds to a system with on
degree of freedom and therefore one can apply directly
Chirikov stochasticity criterion@26# where the width of the
nonlinear resonance is compared to the separation betw
resonances. The width of the nonlinear resonance is give
@26#

Dv52U f 0Vm

dv

dJU
1/2

. ~24!

The distance between resonances is

FIG. 15. Poincare section (a,ax) for the caseV5 v0/2 and a
forcing amplitudef 050.1.
-
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dv5uvm112vmu5
V

m~m11!
. ~25!

If we increase the value of the amplitude of the modulat
of dispersionf 0 then the width of the resonance will increa
and the overlap of neighboring resonances is possible.
condition for this overlap to occur is@26#

K5S Dv

dv D 2

>1. ~26!

Substituting Eqs.~24! and ~25! into Eq. ~26! we obtain the
stochasticity criterion

4 f 0Vmw8m2~m11!2

V2
>1. ~27!

From this condition we can find the value off 0 , when cha-
otic oscillations of the soliton width must occur, i.e.,

f 0>
V2

4Vmv8m2~m11!2
. ~28!

This is the condition of the appearance of chaos near themth
resonance. So, for almost all initial conditions and para
eters of the problem, satisfying condition~28! the oscilla-
tions of the soliton width will be chaotic. Note that even
the developed chaos region some regions of regular mo
will remain. The Fourier componentVm can be calculated
from the equations fora andx in parametric forms~16! and
~19!, ~21!, to be

Vm5
1

p3b̄ 2
E

0

2p eim~j2e0sin j!

12e0cosj
dj

2
b̄ 2e0

2v2

4p
E

0

2p eim~j2e0sin j!sin2j

12e0cosj
dj. ~29!

We have computed the integrals in Eq.~29! numerically us-
ing the Romberg method because of the oscillating chara
of the integrands and found the right hand sidef m of the
inequality ~28! for several values ofm. For V5 v0/4 we
find for an initial amplitude a050.8 and N251.18

FIG. 16. Same as Fig. 15 for a forcing amplitudef 050.2.
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f 150.19, f 250.24, f 350.76, and f 453.47 while for a0
50.51, f 150.16, f 250.0185, f 350.0054, andf 450.002.
This agrees with the numerical observation that the orbi
regular fora050.8 andf 050.1 while it is in the stochastic
layer for thea050.51. ForV5 v0/2 which corresponds to
Figs. 15 and 16, we find fora050.81, f 150.74, f 250.97,
f 353.04, and f 4513.89 and fora050.77, f 150.12, f 2
50.097, f 350.13, andf 450.54, which agrees with the ob
servation from the Poincare section that the orbit fora0
50.8 is regular while that fora050.77 is chaotic forf 0
50.2.

In the limiting case of a large value ofm the Fourier
componentVm can be estimated by computing the integr
using a form of steepest descent. We obtain

Vm'S b̄ 2e0v2~12e0!

4p
1

1

p3b̄ 2
D J1 , ~30!

whereJ1 , is given by

J1'
2Ap

A5

1

Ame0
1/4~12e0!5/4

3expS 1/425m
~12e0!3/2

6e0
1/2 D , ~31!

from which we can obtain an estimate for the chaos criteri
Near the separatrix, whenE→0, andb̄→` the behavior of
Vm is given by

Vm'
21/4

51/2

e0
3/4uEu3/2

AV
expS 1

4
2

5

3 25/2

V

v0
D , ~32!

so that the oscillations of the width are chaotic when
amplitude of the forcingf 0 is greater than

f th5
p3A5

3 25/4

uEu5/2

V3/2e0
3/4v0

3expS 2
1

4
1

5

3 25/2

V

v0
D . ~33!

We can therefore use these estimates to predict chaos
the break-up of the soliton. In the region where the init
energy is negative, such that 11b0

2p2a0
4.2N2a0 where ac-

cording to the standard analysis a soliton must exist, it bre
up. The main reason consists in a diffusion over resonan
and a transition from the oscillatory regime to the unbound
motion whereE.0. The boundary of the stochastic layer
frequency is obtained by setting the parameter of stocha
ity K equal to 1. From Eq.~33! we obtain

v̄5
33/525/4

p4/553/10

V9/10f 0
3/5

v0
2/5

expS 3

20
2

1

25/2

V

v0
D , ~34!

wherev0 is defined by Eq.~19!. When the initial condition
is in the stochastic layer there will be diffusion over res
nances and eventually the soliton width will tend to infinit
is

.

e

nd
l

ks
es
d

ic-

-

i.e., the soliton will decay. The boundary frequency of t
stochastic layerv̄ means that for some values of the initi
chirp b0 and width of solitona0 , i.e., the energy of effective
particleE there exists a value of the frequency for which t
oscillation will be chaotic.

From the expression for the width of the stochastic la
~34! we observe that when the frequency of perturbat
grows the stochastic layer gets exponentially narrow so
the soliton becomes more stable in the high-frequency
gion. This shows the interest of studying pulse propagat
in the case of a rapidly varying dispersion. This is the obj
of the next section.

V. PROPAGATION OF CHIRPED PULSE IN FIBER
WITH RAPIDLY CHANGING DISPERSION

In the case of a high-frequency modulation, the radiat
emitted by the pulse is very strongly reduced, we theref
expect a low-dimensional description of the system to h
and we will show that the variational approach can be u
to describe the propagation of a chirped pulse in a fiber w
a rapidly and strongly changing dispersion. Such a sys
has been intensively investigated as a perspective for op
communications@1#; an example is the two-step dispersio
management scheme with alternating values of the dis
sion value giving a nonzero average. Numerical simulatio
have been carried out in@18# and show that an additiona
amount of energy is necessary in order to propagate a p
in such a medium; a formula for this additional energy w
suggested. In the recent work@29# this problem has been
reduced to the investigation of the properties of a com
cated mapping and it was shown that the dynamics is
scribed by the averaged dispersion. Here we follow a diff
ent approach and show that the variational approach
explain the main properties of the numerical calculations a
gives a formula for the additional energy in agreement w
@18#.

Assuming as above a sinusoidal variation of the disp
sion we perform the averaging of the variational equatio
~8! over fast oscillations following the Kapitza approac
@21#. In this methodf 0 ,V are not assumed to be small, b
their ratio is small, i.e.,e5 f 0 /V!1. We obtain the slow
dynamics via an expansion in powers ofe. It should be noted
that Eq.~8! should be used for the averaging and not Eq.~5!
to eliminate the singular behavior observed for low freque
cies. We write the solution of the system~8! in the form

a5^a&1da, b5^b&1db,

da, db!^a&,^b&, ~35!

where^a& and^b& are slowly varying over the distance 1/V
and thed are rapidly changing functions. Below we will om
the averaging symbol̂¯&. Substituting Eq.~35! into the
above mentioned equations fora(x),b(x) we have the fol-
lowing equations for the mean valuesa,b:

ax52ab12a^db f1&12b^da f1&12^dadb&, ~36!
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bx5
2

p2a4 S 1110
^da2&

a2
24

^da f1&
a D 22b222^db2&

24b^db f1&2
2N2

p2a3 S 11
6^da2&

a2 D , ~37!

and the equations for the correctionsda,db,

dax52 f 1ab12adb12bda, ~38!

dbx5S 6N2

p2a4
2

8

p2a5D da1S 2

p2a4
22b2D f 124bdb.

~39!

Let solve these equations assuming forda and db a har-
monic decomposition, taking into account that the param
f 0 is large. Keeping the main order terms we obtain
solution

da52
2 f 0

V
cos~Vx!ab2

4 f 0

p2V2a3
sin~Vx!

2
4 f 0

V2
sin~Vx!, ~40!

db52
2 f 0

p2V
cos~Vx!1

4 f 0b

p2V2a4
sin~Vx!

1
4 f 0b3

V2
sin~Vx!. ~41!

Substituting Eqs.~40! and ~41! into Eqs.~36! and ~37! we
obtain the equations for the averaged soliton width and ch

ax52ab1
f 0

2

V2 S 4b

p2a3
22ab3D , ~42!

bx5
2

p2a4
22b22

2N2

p2a3

1
4 f 0

2

p2V2 S 12b2

a4
1

3

p2a8
22b42

6N2b2

a3 D . ~43!

Equations~42!,~43! provide a simple tool to investigat
the influence of a high-frequency modulation on a chirp
pulse. To examine the validity of the approach we have co
pared the numerical solution of the PDE@Eq. ~1!# with the
solution given by the ODE’s@Eqs.~42! and~43!#. An impor-
tant step in solving the latter is to take into account the f
that the correction termsda anddb in Eqs.~40! and~41! are
nonzero whenx50. Therefore the initial conditions for Eqs
~42! and ~43! for x50, (a08 ,b08) are given by b085b0

1 (2 f 0 /p2V) and a085$a0 /@12 (2 f 0b08/p
2V)#% where

(a0 ,b0) are the initial width and chirp for the PDE. Figur
17 shows the evolution ofa for V515v0 and f 053. The
PDE solution is in full line, the previous variational OD
@Eq. ~5!# solution in dashed line and the averaged ODE
er
e

p,

d
-

t

-

lution ~42!,~43! in short dashed line. As can be seen the pu
width tends towards a constant while both ODE approac
predict oscillations. The value of the fixed point for the PD
about 0.95 is given to a good approximation by the aver
of the maximum and minimum of the ODE solutions, whic
is 0.9 assuminga0850.84 andb0850. The slight underestima
tion present here is reminiscent of the unperturbed c
where the variational ODE gives a periodic soliton wid
while the PDE shows that the width tends towards a giv
value. The chirpb is shown in Fig. 18 for the PDE solution
in full line and the averaged ODE solution in dashed lin
The initial evolution is well approximated forx,5.

We note here that an averaging procedure for the dis
sion management scheme has been carried out directly o
PDE @Eq. ~1!# and yielded a modified nonlinear Schro¨dinger
equation with higher-order corrections nonlinear in the d
rivatives @30#. This explains the fact that the PDE solutio
tends to the fixed point just as in the unperturbed case.
interesting corollary of this work would be to find the fie
equations corresponding to our averaged system~42!,~43!
and compare with the ones given in@30#.

The system~42!,~43! can be written in a more elegan
way by using the new variablen5ab suggested in@10#,
which shares withb the property of not having a singula
evolution. We have

FIG. 17. Variation of the widtha(x) for V515v0 and f 053.
The PDE solution is shown in full line and the averaged OD
solution from Eqs.~42! and ~43! is drawn in short dash.

FIG. 18. Variation of the chirpb(x) for the calculation shown in
Fig. 17. The PDE solution is shown in full line and the averag
ODE solution from Eqs.~42! and ~43! is drawn in short dash.
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ax52nF11
f 0

2

V2

4

p2a3 S 3

a
22N2D G , ~44!

nx5
2

p2a3
2

2N2

p2a2

1
f 0

2

V2

12

p2a4 F 1

p2a3
1S 2

a
2N2D n2G . ~45!

We can simplify this system by taking into account t
smallness of the expansion parameterf 0

2/V2 and obtain

axx5
4

p2a3
2

4N2

p2a2
1

24f 0
2

p4V2a7

2
6 f 0

2

p2V2a4 S 2

a
2N2D ~ax!

2. ~46!

This describes the motion of a particle in the field of
anharmonic potential depending from the velocity. The fix
point of these equations is given by

a5
1

N2
1

6N6f 0
2

p2V2
, ax50. ~47!

It corresponds to the minimum of the effective potential

Ue f f5
2

p2a2
2

4N2

p2a
1

4 f 0
2

p4V2a6
. ~48!

Compared with the unperturbed potential~11! we seen that
the difference is in the third term in Eq.~48!. This addition
corresponds to increasing of the short range repulsion.
membering that this repulsive part of the potential cor
sponds to the correction of the dispersion, we can concl
that the averaged dynamics corresponds to a uniform fi
with a larger overall dispersion.

The evolution of a chirped pulse in the two step disp
sion management scheme can be described by a simila
proach except that now the modulation of dispersion has
infinite number of harmonics and using Parseval’s relati
f 0

2 in Eqs. ~42! and ~43! should be replaced by
(mÞ0 (ucmu2/m2), wherecm is the Fourier coefficient of the
modulation functionf (x). So we obtain at first order th
motion of a soliton in a medium with the averaged dispers
value d, which is small and corresponds to the anomalo
dispersion case. The corresponding corrections are of the
der e25 f 0

2/V2.
In the derivation we consider the propagation of a pulse

a fiber with two segments of alternating dispersions w
valuesd1 and lengthl 1 and negative valued2 with lengthl 2 .
We expand such a periodic functionf (x) into a Fourier se-
ries

f ~x!5 (
n52`

1`

cne~ i2npx/L !,

whereL5 l 11 l 2 . The coefficients are given by
d

e-
-
e

er

-
p-
n
,

n
s
or-

n

cn5
1

L E
0

L

f~x!e~2 i2npx/L !dx,

and they are

c0[d5
l 1d11 l 2d2

l 11 l 2
,

cn5
Dd

2np Fsin
2np l 1

L
1 i S cos

2np l 1

L
21D G , ~49!

whereDd5d12d2 .
From the fixed point relation~47! and a time rescaling o

the NLSE@Eq. ~1!# we obtain a stationary propagation of
pulse of average widtha0 and energyN2 in a medium of
average dispersiond when

a05
d

N2 S 11
6

p2

N8

d6

f 0
2

V2D . ~50!

Compared to the uniform dispersion casef (x)[d such a
pulse has a larger width and a smaller amplitude. There
one needs additional energy to support it in the rapidly va
ing case. From the Fourier representation off and Eq.~50!
we find this additional energy to be

E5
d

a0
S 11

3

2p4

~Dd!2

d2

l 1l 2

a0
4 D . ~51!

This formula shows that increasing the dispersion differen
or shortening the lengthsl 1 or l 2 leads to an increase of thi
energy. Also the main dependencies in this expression a
with the empirical formula derived in@18# from the numeri-
cal simulations.

VI. CONCLUSION

We have performed a validation of the chirped pu
variational approach in the case of a periodically modula
dispersion by comparing systematically the evolution of
PDE solution with the one given by the ODE. We foun
three main regions of interest depending on the ratio of
forcing frequencyV to the natural frequency of oscillation o
the pulsev0 . When V,v0 the variational approach pro
vides a good model for the description of the soliton. Ve
little radiation is present. In that case we observe soli
chaos and breakup due to nonlinear resonances. We pr
the value for breakup via the Chirikov stochasticity criteri
on the variational ODE. WhenV reachesv0 a resonance
occurs and the soliton emits radiation. In this region,
simplified model fails completely. The emission of radiatio
is strongly reduced whenV@v0 so that a low-dimensiona
description is again possible. Also the analysis of the O
system reveals that increasing the frequency of modula
leads to an exponentially small stochastic layer and thus
stable pulse.

By averaging a well chosen system of variational eq
tions via the Kapitza approach, we obtain the equations
the mean width and chirp of the pulse. Because the exp
sion parameter is the ratio of the amplitude of the modulat
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to the frequency, the former can be large so that the st
applies to the case of a dispersion management. The solu
of the variational equations is in good agreement with
solution of the PDE. It predicts for example the increas
width of the pulse in such a medium. This simple model a
yields the additional power necessary to propagate a puls
a dispersion managed fiber as opposed to a uniform dis
sion fiber.

Finally we note that the mechanism of instability in th
subharmonic case is universal and independent from
character of periodicity of modulation of dispersion. The
sults obtained can be applied to analogous problems in
n.

ch
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,

v,
y
ion
e
d
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r-

e
-
he

theory of spatial solitons in modulated nonlinear media a
for the motion of a body with variable mass in a cent
potential. In the rapidly varying case the analysis can also
extended to any type of periodicity.
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